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Abstract : Background:It is often of interest to biologists to evaluate whether two populations are 8 

alike with respect to a similarity index; assessing the numbers of shared species is one way to do 9 

this. In this study, we propose two Turing-type estimators for the probability of discovering new 10 

shared species and two jackknife-type estimators for the number of shared species in two popula- 11 

tions. Results: We use computer simulation and empirical data analysis to evaluate the proposed 12 

approach. The jackknife-type estimators provide stable and reliable estimates, for both the proba- 13 

bility of discovering new shared species and the number of shared species. We also compare the 14 

jackknife-type estimates with that of Chao et al. (2000) for the number of shared species. Chao’s 15 

estimate has better performance in the case of even populations, while the jackknife-type estimates 16 

have smaller bias in the case of unbalanced populations. Conclusions: When combined with a stop- 17 

ping rule based on the probability of observing new shared species, confidence intervals based on 18 

the proposed jackknife-type estimators can provide better coverage probability for the true number 19 

of shared species. The jackknife-type estimates can provide coverage probability close to 0.95 in all 20 

examples.  21 

Keywords: Species Diversity; Number of Share Species; Comparing Populations; Jackknife Estima- 22 

tor; Simulation 23 

 24 

1. Introduction 25 

Species diversity is a feature often used to compare populations. Among all measures, 26 

the number of species is a simple descriptor but its estimation is remarkably challenging. 27 

Indeed, there were over 550 papers on the topic as of 1991, as summarized by Bunge and 28 

Fitzpatrick (1993). Our primary interest in this paper is to study and evaluate the estima- 29 

tors of the number of shared species in two communities, borrowing ideas from the esti- 30 

mators of number of species in one population. 31 

 Good (1953) proposed an elegant idea for estimating the probability of discovering 32 

new species (Turing’s estimator), using only the information of species observed exactly 33 

once in the sample. Following Good’s idea, Burnham and Overton (1978) applied a jack- 34 

knife technique to obtain a nonparametric estimator of the number of species in one pop- 35 

ulation based on the distribution of observed species frequency. Chao and Lee (1992) pro- 36 

posed an alternative nonparametric estimator based on the concept of sample coverage, 37 

and Chao et al. (1993) later modified this estimator using the information of species ap- 38 

pearing not more than 10 times in the sample.   39 

 The estimation of the number of shared species in two populations can be general- 40 

ized from the species richness in one population. Using the information of sample cover- 41 

age, Chao et al. (2000) proposed a nonparametric estimator of the number of shared spe- 42 

cies and Chuang et al. (2015) developed three different types of jackknife estimators. How- 43 

ever, neither of these approaches takes advantage of jackknifing the sample and we don’t 44 
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know if there are enough observations to make the final decision. In a different approach, 45 

Yue and Clayton (2012) modified Good’s idea and proposed an estimator for the proba- 46 

bility of observing new shared species in two populations. They used this probability as 47 

an indicator to stop collecting more observations, which can lower overall study cost, in 48 

comparing species similarity between two populations. Therefore, in addition to develop- 49 

ing two jackknife-type estimators for the number of shared species and comparing them 50 

to that by Chao et al. (2000), we also evaluate if it is possible to use stopping indicator for 51 

estimating the number of shared species.   52 

Note that, in addition to the proposed two jackknife-type estimators of the number 53 

of shared species in two populations, we also consider the feasibility of using the proba- 54 

bility of observing new shared species as stopping rule. In the next section we briefly re- 55 

view the concept behind jackknife estimators, including Turing-type estimates of the 56 

probability of discovering new shared species. We then develop two nonparametric esti- 57 

mators for the number of shared species in two populations and discuss the variances of 58 

those estimators. We will use computer simulations and empirical analysis of varies data 59 

sets to evaluate the proposed approach.  60 

2. Methodology  61 

Suppose there are two populations and let ),,,( 21 spppp 

= and 62 

),,,( 21 sqqqq 

= denote the species proportions of the two populations, where s is the 63 

number of distinct species in the pooled communities. In other words, if we randomly 64 

select a single sample, then the probabilities of observing the ith species are pi and qi (1  i 65 

 s) in populations 1 and 2, respectively. Let 0s  be the number of shared species and, 66 

without loss of generality, let the species 1, 2, …, and 0s be the shared species in both pop- 67 

ulations. Also, let )(nX i and )(nYi denote the numbers of times of species i is observed 68 

based on n observations from each of populations 1 and 2, respectively, and let )(0 ns de- 69 

note the number of observed shared species from n (pairs of) observations.  70 

 The probability of observing a previously unseen species (which is listed) in a single 71 

sample draw from population 1 can be expressed as ,)0)(()(  ==
i

ii nXIpnu where 72 

)(I is indicator function (Rasmussen and Starr, 1979). The Turing estimate for the prob- 73 

ability of discovering new species is based on the number of species appearing exactly 74 

once in the sample, i.e.
n

g
nu 1)(ˆ = where  =

i

i nXIg )1)((1
 is the number of singletons 75 

(Good, 1953). However, Turing’s estimate has a positive bias since 76 

 −−=
i

n

ii ppnuE 1)1())(ˆ( is larger than .)1())((  −=
i

n

ii ppnuE (Rasmussen and 77 

Starr, 1979) 78 

The Turing-type estimator for the probability of discovering new shared species can 79 

be derived similarly. First, the probability of discovering new shared species after n ob- 80 

servations is  81 

𝑣(𝑛) = ∑ 𝑝𝑖 𝑞𝑖 × 𝐼(𝑋𝑖(𝑛) = 𝑌𝑖(𝑛) = 0) + ∑ (𝑝𝑖 × 𝐼(𝑋𝑖(𝑛) = 0, 𝑌𝑖(𝑛) > 0) + 𝑞𝑖 × 𝐼(𝑋𝑖(𝑛) > 0, 𝑌𝑖(𝑛) = 0))
𝑠0
𝑖=1

𝑠0
𝑖=1 (1) 82 

where (p1, p2, …, ps) and (q1, q2, …, qs) are the species proportions of the two populations. 83 

(Yue and Clayton, 2012). We propose two Turing-type estimators, denoted )('1 nv and 84 

)('

2 nv , based on equation (1): the first is from Yue and Clayton (2012) and the other is a 85 

direct extension from the one-population case. The first estimator is derived from ))(( nvE , 86 

and
n

g1 is used to replace )(nu as in Turing’s estimate. Thus, )('1 nv can be expressed as 87 
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 88 

Equation (2) is the probability that a shared new species occurs at the nth sample point, 89 

given the sample statistics ( ), ( )i iX n Y n for 1,2, , .i s=  Since Turing’s estimate has a 90 

positive bias, )('1 nv is also biased, as described in the Appendix of Yue and Clayton (2012).  91 

 Another Turing-type estimator is to treat the two populations as two independent 92 

populations and then the two-population Turing’s estimate is the sum of Turing’s esti- 93 

mates from each population. Specifically, for the new shared species, we only consider the 94 

case where they are observed in one population but not yet observed in the other popula- 95 

tion. The estimator is expressed as 96 

( ) ( )
)3(.

1)(,0)(0)(,1)(
)(

11

'

2 
==

=
+

=
=

s

i

ii
s

i

ii

n

nYnXI

n

nYnXI
nv  97 

The difference between )('1 nv and )('

2 nv is
( )


=

==
=−

s

i

ii

n

nYnXI
nvnv

1

'

2

'

1

1)()(
)()( , 98 

and thus )('

2 nv has the potential to reduce the bias of )('1 nv ; in fact this will be shown to 99 

be the case in the next section.  100 

 We next develop jackknife-type estimators for the number of shared species similar 101 

to those used by Burnham and Overton (1978). For a single sample, their (first-order) jack- 102 

knife estimate of the number of species in a single population is given by: 103 

)(
1

)(ˆ *

1

*

0 f
n

n
nssJ

−
+= where )(*

0 ns is the number of observed species and
*

1f is the 104 

number of singletons. A similar idea can be applied to the case of two populations and we 105 

can use the number of species appearing once to develop the jackknife type estimate of 106 

number of shared species. Let +1f (or 1+f ) be the numbers of species appearing exactly 107 

once in the first (or second) population, which also appear at least once in the other pop- 108 

ulation. Let 11f be the number of species appearing exactly once in both populations. Then, 109 

by analogy of using the singletons and the equations (2) and (3), the jackknife-type esti- 110 

mators 
−

+=
n

n
nssJ

1
)(ˆ *

0 (singleton) for the number of shared species can be expressed 111 

as )(
1

)(ˆ
111101 fff

n

n
nssJ ++

−
+= ++ and )(

1
)(ˆ

1102 ++ +
−

+= ff
n

n
nssJ . The deriva- 112 

tion of these two estimators is outlined in Appendix 1. 113 

Using techniques similar to those used by Burnham and Overton (1978), the jack- 114 

knife-type estimators can also be expressed in the following form,  115 

)4(ˆ1
)(ˆ

1

101 
=

=
−

+=
n

i

iiJ faf
n

n
nss  116 

where 117 

( ) ( ) ( )

( ) ( ) )5(0)(,1)(1)(,0)(

1)()(1)(1)(ˆ

11

111

1





==

===

==−==−

==+=+==

s

i

ii

s

i
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s
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s
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a  , and if is the number of species ap- 119 

pearing exactly i times (i  1) in either population.  120 

One of the advantages of using the jackknife procedure is that the variance of the 121 

jackknife-type estimators can be derived easily. The variance of the first estimator is  122 

)6(.ˆ)ˆ(
1

1

2

1 
=

−=
n

i

JiiJ sfasVar  123 

The second estimator can also be expressed in a form similar to equation (5): 124 

)7(
~1

)(ˆ
1

102 
=

=
−

+=
n

i

iiJ fbf
n

n
nss  125 

with variance  126 

)8(ˆ)ˆ(
1

2

2

2 
=

−=
n

i

JiiJ sfbsVar  127 

where 1,1
))(1(

2

1

111
1 ===+

+−
= nbb

fn

ffn
b  . Since the difference between the 128 

two estimators from equations (2) and (3) for the probability of discovering new shared 129 

species is
( )


=

==s

i

ii

n

nYnXI

1

1)()(
, the difference between the two jackknife-type estima- 130 

tors from equations (4) and (7) is
n

fn 11)1( −
.  131 

 Note that the jackknife-type estimators in equations (4) and (7) are constructed sim- 132 

ilar to the form of jackknife estimator for one population, where the estimate of number 133 

of species is the sum of the number of observed species with nn /)1( − multiplying the 134 

number of singletons in the sample. Interestingly, Chao’s estimator for the number of 135 

shared species (Chao et al., 2000) also has the same form as Chao’s estimator for the num- 136 

ber of species in one population (Chao and Lee, 1992; Chao et al., 1993). In particular, 137 

using a homogeneous population case as an example, Chao’s estimator for the number of 138 

shared species can be expressed as
C

ns
nss rare

Chao ˆ

)(
)(ˆ

0 += , where )(nsrare is the number 139 

of observed rare shared species and Ĉ is the estimate of sample coverage for the shared 140 

species. Using our notation,  =
i

iirare nYnXIns ]10)(),(0[)( is the number of ob- 141 

served shared species appearing at most 10 times in both populations (i.e., rarely), and the 142 

sample coverage estimate is 





=

=





=
)(

1
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)(
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**
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12
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3. Simulation Studies 147 

We first use computer simulation to evaluate the performance of )('1 nv and )('

2 nv , es- 148 

pecially when used to form stopping rules that lead to estimates of the number of shared 149 

species, and compare three nonparametric estimators of the number of shared species in 150 

two populations: 1
ˆ

Js , 2
ˆ

Js , and Chao’s estimate (Chao et al., 2000). As pointed out by Yue 151 

and Clayton (2012), the probability of observing new shared species can be used as a stop- 152 

ping indicator for sampling. We shall extend its role to develop the estimate for the num- 153 

ber of shared species, and use the probability as a stopping indicator. 154 

Similar to Yue and Clayton (2005 and 2012), we use geometric distributions to model 155 

the distribution of species within each population. That is, we assume that 
i

ip   and 156 

likewise for
i

iq  . In addition, we assume that the shared species are dominant in both 157 

populations (Yue et al., 2001; Yue and Clayton, 2005). We shall first evaluate the perfor- 158 

mance of estimators for the probability of discovering new shared species )('1 nv and )('

2 nv , 159 

using v(n) as a benchmark. Note that the computer simulations conducted in this study 160 

are based on an Intel-based PC, using the statistical software R, version 2.12.0. All results 161 

are from 1,000 simulation replications for each case. 162 

Example 1. Suppose that the species proportions of the two populations follow geo- 163 

metric distributions and with =0.9, 0.8, 0.7, and 0.6. Note that a larger  in- 164 

dicates a more even (or balanced) population structure, while a smaller  means that some 165 

species are dominant and the population structure is more unbalanced. Let the numbers 166 

of species in the two populations be 100, the number of shared species be 20 or 50, and the 167 

shared species are the most dominant species in each population. The results are each 168 

based on 1,000 simulation runs. 169 

Table 1. Probability of Discovering New Shared Species 170 

(a) Numbers of species in two populations are 1001 =s & 1001 =s , the number of shared spe- 171 

cies is 200 =s , and species proportions follow Geom(). 172 

 173 

n 
 = 0.9  = 0.8  = 0.7  = 0.6 

)(nv  )('1 nv  )('

2 nv  )(nv  )('1 nv  )('

2 nv  )(nv  )('1 nv  )('

2 nv  )(nv  )('1 nv  )('

2 nv  

100 .04469  .05077  .04436  .04196 .05126  .04144  .02723 .03558  .02825 .01931  .02476  .01966  

200 .00705  .00730  .00686 .01804 .02310  .01900 .01366  .01841  .01461 .00979  .01154  .00935  

500 .00007  .00006  .00006  .00408  .00488  .00425  .00564 .00686 .00547  .00408  .00466  .00373 

1000 0 0 0 .00068  .00072 .00068 .00281 .00331 .00268  .00191  .00238 .00191  

1500 0 0 0 .00011 .00012  .00012 .00170 .00198 .00162  .00133  .00156  .00126  

2000 0 0 0 .00003 .00003 .00003 .00110 .00140  .00115  .00102 .00112  .00091 

3000 0 0 0 0 0 0 .00061 .00073  .00062 .00068  .00079  .00064 

4000 0 0 0 0 0 0 .00038 .00044 .00038 .00049 .00062 .00049  

5000 0 0 0 0 0 0 .00026 .00026 .00023 .00039  .00050 .00040 

 174 

(b) Numbers of species in two populations are 1001 =s & 1001 =s , the number of shared spe- 175 

cies is 500 =s , and species proportions follow Geom(). 176 

n 
 = 0.9  = 0.8  = 0.7  = 0.6 

)(nv  )('1 nv  )('

2 nv  )(nv  )('1 nv  )('

2 nv  )(nv  )('1 nv  )('

2 nv  )(nv  )('1 nv  )('

2 nv  

i

ii qp =
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500 .01816 .02208 .01784 .00880 .01111 .00890 .00550 .00718 .00574 .00383 .00487 .00388 

1000 .00793 .00941 .00778 .00461 .00550 .00441 .00276 .00339 .00273 .00197 .00240 .00192 

1500 .00433 .00514 .00437 .00308 .00379 .00303 .00185 .00237 .00191 .00131 .00155 .00125 

2000 .00263 .00303 .00262 .00225 .00279 .00222 .00143 .00167 .00134 .00095 .00123 .00098 

3000 .00110 .00127 .00114 .00154 .00186 .00148 .00093 .00123 .00097 .00063 .00086 .00068 

4000 .00047 .00055 .00052 .00110 .00144 .00115 .00071 .00086 .00069 .00048 .00062 .00049 

5000 .00024 .00026 .00024 .00090 .00113 .00090 .00056 .00070 .00056 .00038 .00049 .00039 

 177 

 Table 1 lists the probability and its estimates of discovering new shared species given 178 

that n observations are taken from each population and that the species proportions fol- 179 

low the geometric distributions stated above. As expected, the estimate )('1 nv has a larger 180 

bias, especially in the cases of smaller sample sizes. On the other hand, the estimate )('

2 nv 181 

performs better in terms of bias for all cases and it is not influenced by the population 182 

structure (i.e., even or unbalanced). It seems that the deduction of 183 

( )

=

==s

i

ii

n

nYnXI

1

1)()(
 from )('1 nv is reasonable since )('1 nv  has a positive bias (Yue 184 

and Clayton, 2012), although it looks like )('

2 nv could be under-biased from equation (3). 185 

Nonetheless, based on these simulation results, it appears that the estimate )('

2 nv is a bet- 186 

ter estimate for the probability of discovering new shared species.  187 

 We shall continue the comparison of estimators for the number of shared species, 188 

despite the fact that the estimate )('1 nv is over-biased. Note that both the original and mod- 189 

ified versions of Chao’s estimates are considered in this study. However, we will only 190 

show the modified Chao’s estimate (denoted as 2
ˆ
Cs for the rest of this study) since it per- 191 

forms better than the original Chao’s estimate. In the next example, we compare two jack- 192 

knife-type and Chao’s estimators for the number of shared species in two populations.  193 

Example 2. We now consider the comparison of estimates for the number of shared 194 

species using the same settings as in Example 1. In particular, we show the averages and 195 

variances of estimates from 1,000 simulation runs. To simplify the discussion, the cases 196 

where with =0.9 and 0.7 will be used. The details of the simulation results 197 

can be found in Appendices 2 and 3.  198 

 We first show the comparison of two jackknife-type and Chao’s estimators for the 199 

number of shared species (Figures 1 and 2). In the even population case, Chao’s estimate 200 

has the best performance for both 0s = 20 and 50. It converges much faster and does not 201 

have larger bias like the jackknife-type estimates. On the other hand, for the unbalanced 202 

population cases, the jackknife-type estimators (especially 1
ˆ

Js ) have a smaller bias, for 203 

both 0s = 20 or 50. But all estimators converge very slowly in the case of larger 0s and un- 204 

balanced populations. It seems that, by analogy, the overbiased property of )('1 nv
 also 205 

carries over to the estimation of number of shared species in 1
ˆ

Js . In particular, since the 206 

behaviors of singletons can be very discrete in the cases of unbalanced populations, it is 207 

reasonable to be conservative and choose a slightly overbiased estimator.  208 

 209 

Figure 1. Estimates for the Number of Shared Species 210 

(The numbers of species in two populations are 1001 =s & 1002 =s , and the number of shared 211 

species is 200 =s ) 212 

i

ii qp =
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 213 

Figure 2. Estimates for the Number of Shared Species 214 

(The numbers of species in two populations are 1001 =s & 1002 =s , and the number of shared 215 

species is 500 =s ) 216 

 217 

 Note that, although we found that Chao’s estimate performs well in the even popu- 218 

lation case, it can still produce undesirable results. For example, assume that the species 219 

proportions satisfy
i

ip )99.0(= and
i

iq )9.0(= , and that the number of shared species is 220 

80. Under this setting, there will be no observed rare shared species once the sample size 221 

is big enough. As shown in Table 2, we cannot compute Chao’s estimate since all observed 222 

shared species appear more than 10 times. On the other hand, the jackknife-type estima- 223 

tors converge to the true number of shared species as the sample size increases.  224 
Table 2. Estimates for the Number of Shared Species.(Numbers of species in two populations are 225 

1001 =s & 1001 =s , the number of shared species is 800 =s , and species proportions are from 226 

Geom(0.99) and Geom(0.9); J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): num- 227 
ber of observed shared species). 228 
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n )(0 ns  2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

500 42.68 51.40 53.74 53.42 

1000 49.46 54.75 58.85 58.85 

2000 55.87 55.97 64.88 64.88 

3000 59.44 NA 68.21 68.21 

5000 63.92 NA 72.36 72.36 

8000 67.66 NA 75.57 75.57 

10000 69.57 NA 77.21 77.21 

15000 72.31 NA 78.96 78.96 

20000 74.18 NA 80.16 80.16 

Note: Chao’s estimates become N/A if the sample coverage = 0. 229 

 Next we compute the Monte Carlo variance of the two jackknife-type and Chao’s 230 

estimators, and also the variance of jackknife-type estimators from equations (6) and (8). 231 

Since all estimators converge to the true value fairly fast in the even population case ( = 232 

0.8 & 0.9), we will focus on the case of =0.7. (Appendix 2 shows the details of simulation 233 

results for all cases with =0.9, 0.8, 0.7, and 0.6). Figure 3 shows the sample 234 

variances of two jackknife-type and Chao’s estimators from 1,000 runs. On average, the 235 

jackknife-type estimators have smaller and smoother variances ( 2
ˆ

Js the smallest). The var- 236 

iance of Chao’s estimate jumps up and down even when there are 2,000 or more observa- 237 

tions, which might indicate that Chao’s estimate can still be unstable even when there are 238 

a lot of observations. 239 

Figure 3. Variance of Estimates for the Number of Shared Species 240 

 241 

 242 

 243 

Figure 4. Variance of Jackknife-type Estimates for the Number of Shared Species 244 

i

ii qp =
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 We shall also check whether equations (6) & (8) can provide reliable approximation 246 

to the variance of jackknife-type estimators, by using the sample variance from Monte 247 

Carlo simulation as the baseline. Figure 4 shows the variances from equations (6) & (8) 248 

and those from Monte Carlo simulations which are marked with “Monte Carlo”. Similar 249 

to the overbias in estimating the number of shared species, the variance of 1
ˆ

Js from equa- 250 

tion (6) is always larger than that from Monte Carlo simulation. In contrast, the variance 251 

equation (8) for 2
ˆ

Js is a good approximation to that of Monte Carlo simulation. In any case, 252 

the variance formulae for the jackknife-type estimators provide fairly reliable approxima- 253 

tions.  254 

4. Empirical Studies  255 

In addition to the simulations of the previous section, we also use empirical data to 256 

evaluate the three estimates of shared species. Four data sets are considered in this study: 257 

the first two are data on wild birds and on crabs (Yue and Clayton, 2012), the third one is 258 

based on forest data, and the last one comes from Chinese literature. Also, we consider 259 

the case of sampling with replacement since there are finitely many observations in all 260 

data sets. In other words, we are using these data sets as representing the true populations, 261 

and our sampling emulates sampling from these populations. 262 

Example 3. The Taiwan Bird data (Yue et al., 2001) contain two communities of wild 263 

birds consisting of 184 different species and 144,963 observations. There are 155 and 149 264 

species in population 1 and 2, respectively, and 111 shared species (more than half are 265 

shared species). The shared species are dominant in each population, similar to the setting 266 

in the previous section. We therefore expect that the results of the jackknife-type estimates 267 

to be similar to those in the previous section. 268 

Table 3. Taiwan’s Bird Data(Numbers of species in two populations are 1551 =s & 1492 =s and 269 

the number of shared species is 1110 =s ; J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s esti- 270 

mate, s0(n): number of observed shared species). 271 
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n )(nv  )('1 nv  )('

2 nv  )(0 ns  2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

est. s.e. prob est. s.e. prob est. s.e. prob 

3000 .07717  .09651  .07691  56.95  65.35  7.53  0.01  74.11  7.33  0.01  71.85  5.71  0.00  

6000 .04532  .05594  .04525  67.40  75.11  6.71  0.01  84.55  7.17  0.10  82.54  5.72  0.01  

9000 .03163  .03872  .03169  73.49  80.48  6.53  0.02  90.04  7.04  0.21  88.12  5.62  0.06  

15000 .01924  .02305  .01919  80.54  86.72  5.81  0.03  96.39  6.86  0.42  94.60  5.50  0.23  

24000 .01147  .01354  .01152  87.22  93.76  6.30  0.15  102.48  6.68  0.68  100.83  5.41  0.51  

30000 .00879  .01020  .00878  90.08  96.14  5.84  0.24  105.30  6.68  0.76  103.64  5.40  0.66  

36000 .00697  .00803  .00697  92.44  97.47  5.53  0.28  107.20  6.53  0.84  105.68  5.32  0.78  

45000 .00517  .00586  .00516  95.48  100.12  4.85  0.35  109.71  6.36  0.92  108.30  5.23  0.88  

51000 .00432  .00489  .00434  97.08  101.30  4.54  0.38  110.95  6.25  0.94  109.63  5.16  0.91  

 Table 3 shows the estimates of the probability of discovering new shared species and 272 

the estimates of the number of shared species as a function of sample size. Moreover, we 273 

also calculate the coverage probability for the number of shared species; that is, the prob- 274 

ability that the confidence interval .).96.1ˆ.,.96.1ˆ( essess +− covers the true number 275 

of shared species. We expect this interval to behave approximately like a 95% confidence 276 

interval and so this coverage probability is intended to verify whether the estimate can be 277 

used in building confidence intervals. Note that ŝ is the estimate for the number of shared 278 

species, and its variance is calculated via 1,000 simulation runs. Note that we can also use 279 

the variances via equations (6) and (8) to compute the coverage for jackknife-type estima- 280 

tors (and the results of coverage probability are fairly close). However, the variance of 281 

Chao’s estimator can only be computed via Monte Carlo simulation, and we shall com- 282 

pute the variances all based on simulation.  283 

 From the table we can see that, for the probability of discovering new shared species, 284 

)('

2 nv again is a better estimate for small and large samples, and )('1 nv is always over-bi- 285 

ased. The first jackknife-type estimate 1
ˆ

Js of the number of shared species again is the 286 

largest among the three estimates, but, unlike the over-biasedness of )('1 nv , it is still 287 

smaller than the true s when the sample drawn is large. Its variance decreases gradually 288 

as the sample size increases and becomes stable when the sample size is around 50,000, 289 

where the coverage probability is about 95%. The second jackknife-type estimate 2
ˆ

Js has a 290 

similar behavior but it requires a larger sample to become stable.  291 

Chao’s estimate 2
ˆ
Cs , on the other hand, does not reach the true number of shared 292 

species when the sample size is 51,000, and it might need considerably more samples to 293 

reach the true number. It seems that 2
ˆ
Cs is more conservative in estimating the number of 294 

shared species, and its coverage probability is too small even when there are 51,000 obser- 295 

vations from each population (about 70% of the original sample size 144,963).  296 

Example 4. The Panama Crab data (Smith et al., 1996) were collected in two coral 297 

communities at two locations in Panama. There are 55 and 50 species in populations 1 and 298 

2, respectively, and 31 shared species, accounting for 74 different species and 5,831 obser- 299 

vations. Unlike the Taiwan Bird data, the shared species in the crab data are not so domi- 300 

nant and the number of shared species is less than half of the total species. 301 

Among all the examples in these empirical analyses, the crab data have the smallest 302 

numbers of shared species and total observations. Because the smaller population in the 303 

crab data has about 1,100 observations in total, we start with 110 observations from each 304 

population and consider only the case where the sample size is a multiple of 110 for com- 305 

putational simplicity. Once again, )('

2 nv is shown to be better than )('1 nv for estimating the 306 

probability of discovering new shared species, no matter what the sample size is. For the 307 



Diversity 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

number of shared species, 1
ˆ

Js has the largest averages and 2
ˆ
Cs is the smallest. Also, Chao’s 308 

estimate performs the best in coverage probability.  309 

The jackknife-type estimates never reached 90% of the coverage probability, although 310 

their estimates increase gradually and their variances are more stable. The reason why the 311 

jackknife-type estimates have smaller coverage probability is the variance, since the aver- 312 

ages of 2
ˆ
Cs are smaller than those of 1

ˆ
Js and 2

ˆ
Js (and smaller than 310 =s ). This matches 313 

the result that 2
ˆ

Js has the smallest variance and smallest coverage probability. However, 314 

since 1
ˆ

Js has a larger estimate of variance via equation (6), 1
ˆ

Js would have a better cover- 315 

age probability if its variance were computed from equation (6).  316 

Table 4. Panama’s Crab Data.(Numbers of species in two populations are 551 =s & 502 =s and 317 

the number of shared species is 310 =s ; J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s esti- 318 

mate, s0(n): number of observed shared species). 319 

n )(nv  )('1 nv  )('

2 nv  )(0 ns  2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

est. s.e. prob est. s.e. prob est. s.e. prob 

110 .03572  .04486  .03793  11.05  14.06  4.54  0.05  15.94  4.05  0.15  15.18  3.05  0.04  

220 .02167  .02622  .02185  14.03  18.65  9.85  0.97  19.77  4.47  0.33  18.81  3.30  0.12  

330 .01588  .01866  .01576  16.09  20.57  7.09  0.67  22.23  4.55  0.46  21.28  3.42  0.26  

550 .00995  .01181  .01003  18.90  22.58  6.66  0.84  25.38  4.65  0.66  24.40  3.52  0.51  

1100 .00495  .00544  .00484  22.70  26.23  4.09  0.78  28.68  4.21  0.82  28.02  3.39  0.77  

1320 .00390  .00449  .00402  23.72  27.73  4.69  0.95  29.65  4.16  0.84  29.02  3.38  0.83  

1650 .00315  .00342  .00307  24.71  28.63  4.91  0.97  30.36  4.04  0.88  29.78  3.30  0.86  

1980 .00236  .00256  .00236  25.67  29.03  4.96  0.98  30.73  3.67  0.85  30.34  3.14  0.85  

2200 .00207  .00226  .00209  26.17  29.36  4.47  0.97  31.14  3.66  0.89  30.75  3.11  0.88  

Example 5. Barro Colorado Island’s Forest Data1 are collected around the Gatun Lake 320 

area in Panama. The forest is separated into 4 regions (or populations): A, AB, D, and P. 321 

We choose regions A and AB in this study, containing 308 and 207 species, respectively. 322 

The reason for choosing this combination is that there are 207 shared species, i.e., AB can 323 

be treated as a sub-population of A, and the number of shared species in the two popula- 324 

tions is equivalent to the number of species in AB. Also, the number of observations in 325 

region A is 242,083, much larger than that in region AB (5,883).  326 

 Corresponding to region AB, the largest sample size considered is about two times 327 

its number of observations (12,000). As expected, )('

2 nv is a good estimate of the probabil- 328 

ity for discovering new shared species and )('1 nv is always biased. The jackknife-type es- 329 

timates are fairly accurate estimates for the number of shared species, and they also have 330 

good coverage probabilities. Their variances decrease smoothly as the sample size in- 331 

creases. On the other hand, Chao’s estimate grows slower, compared to of the jackknife- 332 

type estimates. Chao’s estimate does not have a good coverage probability and it is likely 333 

that more observations are required.  334 

 335 

Table 5. Barro Colorado Island’s Forest Data (Numbers of species in two populations are 336 

3081 =s & 2072 =s and the number of shared species is 2070 =s ; J1 & J2: 1st & 2nd Jack- 337 

knife estimates, C2: Chao’s estimate, s0(n): number of observed shared species). 338 

                                                           
1 We would like express our appreciation to Professor T.J. Shen, Department of Applied Mathematics,National Chung 

Hsing University, Taiwan, for providing this data set.  

http://www.amath.nchu.edu.tw/
http://www.nchu.edu.tw/
http://www.nchu.edu.tw/
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n )(nv  )('1 nv  )('

2 nv  )(0 ns  

2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

est. s.e. prob est. s.e. 
pro

b 
est. s.e. 

pro

b 

600 .06888 .08510 .06923 81.4  118.9  15.5  0.00  132.4  13.6  0.00  122.9  9.8  0.00  

1200 .03503 .04244 .03496 110.6  144.4  13.8  0.02  161.5  13.4  0.11  152.5  9.8  0.00  

3000 .01311 .01547 .01299 148.0  174.3  11.8  0.20  194.4  12.5  0.78  186.9  9.3  0.44  

4500 .00807 .00935 .00798 163.1  188.8  10.7  0.57  205.2  11.7  0.95  199.1  8.9  0.83  

6000 .00546 .00621 .00540 173.1  193.9  8.8  0.66  210.4  10.8  0.98  205.5  8.4  0.94  

7500 .00392 .00424 .00376 179.8  196.0  7.7  0.70  211.6  9.7  0.96  208.0  7.8  0.94  

9000 .00279 .00316 .00283 185.3  199.0  6.4  0.75  213.7  9.1  0.96  210.7  7.4  0.96  

10500 .00208 .00231 .00211 188.9  199.9  5.4  0.73  213.2  8.2  0.98  211.0  6.8  0.98  

12000 .00163 .00175 .00161 191.6  200.3  5.1  0.73  212.6  7.5  0.96  210.9  6.4  0.96  

Example 6. The Chinese Novel Data contain two novels from Louis Cha Leung Yung, 339 

a famous Chinese writer. He has 10 famous historical novels, written between 1955 and 340 

1972. The two novels chosen are “Fox of Snowy Mountain”(A) and “The Legendary 341 

Swordsman Enjoy Itinerant Life”(B) written in 1959 and 1967, respectively. We will treat 342 

different Chinese characters as different species. Then, there are 2,591 and 3,690 species in 343 

A and B, and 2,457 shared species. 344 

 Novels A and B have about 110,000 and 420,000 characters (or observations). Thus, 345 

for computational efficiency, the sample size starts at 21,200 observations, about 20% of 346 

the observations in Novel A. We found that )('

2 nv is a reliable estimate for the probability 347 

of discovering new shared species. On the other hand, although )('1 nv is slightly over-bi- 348 

ased, it is still a good estimate and is about 10% to 20% over-biased.  349 

 Neither Chao’s estimate nor the jackknife-type estimates have desirable results in 350 

coverage probability. Unlike the previous three examples, the coverage probability does 351 

not stabilize as the sample size increases. The coverage probability of Chao’s estimate is 352 

always 0, and those of the jackknife-type estimates decrease to 0 after reaching the maxi- 353 

mum. It seems that the jackknife-type estimates can still provide useful information about 354 

the number of shared species, but the sample size is a very important factor. This result is 355 

similar to the optimal stopping for estimating the similarity index between two popula- 356 

tions in Yue and Clayton (2012). Since it is not possible to sample all the individuals in the 357 

populations, knowing the appropriate time to stop sampling would be more feasible and 358 

cost efficient. Together with the probability of discovering new shared species )('1 nv and 359 

)('

2 nv , the jackknife-type estimators provide fairly accurate estimates to the number of 360 

shared species. For example, it seems that 005.0)('1 nv or 004.0)('

2 nv is a possible 361 

candidate for stopping, where the coverage probability of jackknife-type estimators is 362 

around 0.95.  363 

Table 6. Chinese Novel Data (Numbers of species in two populations are 25911 =s & 364 

36902 =s and the number of shared species is 24570 =s ; J1 & J2: 1st & 2nd Jackknife esti- 365 

mates, C2: Chao’s estimate, s0(n): number of observed shared species) 366 

n )(nv  '

1( )v n  )('

2 nv  )(0 ns  

2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

est. s.e. 
pro

b 
est. s.e. 

pro

b 
est. s.e. 

pro

b 

21200 .02421 .02907 .02402 1369.2  1681.6  41.2  0 1985.5  46.5  0 1878.4  34.0  0 

42400 .01147 .01354 .01152 1721.3  1966.1  34.1  0 2295.5  43.4  0.04 2209.6  32.9  0 
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63600 .00697 .00803 .00697 1909.5  2100.9  27.2  0 2420.2  40.0  0.84 2352.8  31.1  0.09 

74200 .00568 .00649 .00569 1976.8  2148.9  27.0  0 2458.4  38.3  0.96 2398.8  30.2  0.49 

84800 .00471 .00534 .00472 2031.8  2187.5  25.0  0 2484.6  36.7  0.92 2432.3  29.4  0.86 

95400 .00398 .00446 .00398 2078.0  2219.3  22.5  0 2503.8  35.3  0.78 2457.2  28.5  0.97 

106000 .00341 .00379 .00340 2116.0  2245.6  22.3  0 2517.7  33.9  0.59 2476.3  27.7  0.90 

127200 .00254 .00281 .00255 2178.8  2285.8  19.8  0 2536.0  31.5  0.26 2502.9  26.2  0.58 

148400 .00197 .00214 .00198 2226.2  2312.3  17.2  0 2543.0  29.2  0.12 2516.6  24.7  0.28 

169600 .00155 .00168 .00155 2262.7  2334.6  16.8  0 2546.9  27.4  0.05 2524.9  23.4  0.15 

5. Conclusions  367 

The rare species are often more important than dominant species in the estimation of 368 

the probability of discovering new species and the number of species in a population (Gas- 369 

ton, 2012; Mi et al., 2012; Shen and Chen, 2019). For example, two popular methods, Tu- 370 

ring’s and Chao’s estimates, use the information on rare species for estimation of new 371 

species. The estimation of shared species in two populations can be directly extended from 372 

the methods used in one population. In this study, we establish jackknife-type estimates 373 

of shared species and compare it with that developed by Chao et al. (2000).   374 

 First, we proposed a modified estimate for the probability for discovering new 375 

shared species in two populations, in order to reduce the bias of the estimate suggested 376 

by Yue and Clayton (2012). Then, based on these two estimates for discovering new shared 377 

species, we extended the jackknife-type estimate of Burnham and Overton (1978) to obtain 378 

two estimates for the number of shared species in two populations. We compare these two 379 

jackknife-type estimates with that of Chao et al. (2000). Simulation studies and real exam- 380 

ples confirm that the modified estimate )('

2 nv has a smaller bias in estimating the proba- 381 

bility of discovering new shared species, no matter what the sample size is.  382 

 For the number of shared species, the performance of estimates is influenced by the 383 

population structure and the sample size. In general, Chao’s estimate has a smaller bias 384 

and converges to the true value much faster in the case of more even populations, and the 385 

jackknife estimates are better in the case of unbalanced populations (i.e., smaller ). In the 386 

case of more even populations, all estimates are accurate even when there are not many 387 

observations. On the other hand, in the case of unbalanced populations, more observa- 388 

tions are required and the jackknife-type estimates have a smaller bias. In addition, the 389 

variance of jackknife-type estimates can be approximated by the derived equations, which 390 

can be convenient in empirical analyses.  391 

 The coverage probability calculated in the real examples shows another difference 392 

between the jackknife and Chao’s estimates. Applying a normal approximation for a 95% 393 

confidence interval, we evaluated the probability of covering the true number of shared 394 

species. Except for the Panama Crab data, Chao’s estimate does not have coverage prob- 395 

ability near 0.95. In contrast, both jackknife-type estimates can provide coverage proba- 396 

bility close to 0.95 in all examples, provided that there are enough observations. Based on 397 

our experience, it seems that 005.0)('1 nv  (or 004.0)('

2 nv ) is a possible useful indica- 398 

tor for stopping sampling. When the sampling cost ,005.0=c  the jackknife-type esti- 399 

mate 1
ˆ

Js derived from )('1 nv in Yue and Clayton (2012) has coverage probability close to 400 

0.95 (except for the Panama Crab data). A similar result holds for another jackknife-type 401 

estimator 2
ˆ

Js . This is similar to the results in Yue and Clayton (2012), although their in- 402 

terest is in the similarity index.  403 

 Note that we also conducted supplementary simulations to explore group sampling, 404 

group sampling with variable (i.e. random) numbers of observations, and sampling with 405 

one group observed sequentially and one group observed through a fixed sample. By and 406 
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large the conclusions remain the same. It seems that the paired sampling represents the 407 

slowest incremental rate of accruing information and provides a useful baseline for exam- 408 

ining the estimators.  409 

As an alternative to our approach, using the sample coverage is another feasible ap- 410 

proach for estimating species numbers, and there has been considerable success in using 411 

that for single populations. Among others, Chao and her colleagues, e.g., Chao and Lee, 412 

1992 and Chao et al., 2000, have made important contributions to that topic. However, 413 

addressing the sample coverage for estimating shared species requires a study separate 414 

from the work presented here. 415 

Appendix 1. Derivation of Jackknife-type Estimators 416 

 The first estimator )(
1

)(ˆ
111101 fff

n

n
nssJ ++

−
+= ++ can be treated as a combina- 417 

tion of jackknife-type and moment-type approaches. The jackknife-type estimate of the 418 

number of species for a population is the number of observed species plus )()1( nun − , 419 

where )(nu is the probability of observing new species. Then, plugging into the Turing- 420 

type estimator for the probability of discovering new shared species 421 

n

fff
nv 1111'

1 )(
++

= ++ , we obtain the jackknife-type estimator
1

ˆ
Js of the number of 422 

shared species in two populations. 423 

The second estimator is based on jackknife technique noting that there are quite a few 424 

approaches to obtain jackknife estimators. Considering all possible combinations (i.e. per- 425 

mutations) is a natural choice, similar to Burnham and Overton (1978). There are 426 

two ways for counting possible combinations: one is pair-wise and the other is com- 427 

pletely random. For the pairwise case, the observations are drawn in pairs, so (X(i), Y(i)) 428 

are chosen together, where X(i) and Y(i) are the ith sample in the first and second popula- 429 

tions, i.e., there are n possible jackknife subsamples if one pair of observations are omitted 430 

each time. For the completely random case, the observations are drawn randomly, so (X(i), 431 

Y(j)) are chosen and it is possible i  j, which means that there are 
2nnn = possible 432 

jackknife subsamples if one observation is omitted from each population. Since the deri- 433 

vation of jackknife-type estimators are obtained via listing all possible combinations, we 434 

will only show the final results. 435 

 In the pair-wise case, depending on whether X(i) and Y(i) are both shared species 436 

and singletons, the jackknife-type estimator lies between two values  437 

  Upper Bound = )(
1

)( 110 ++ +
−

+ ff
n

n
ns  438 

  Lower Bound = )(
1

)( 11110 fff
n

n
ns −+

−
+ ++

 439 

where +1f is the number of species appearing exactly once in first population 440 

and at least once in the second population. The definition of 1+f is similar. The 441 

upper bound in the pair-wise case can be treated as a direct extension of the jackknife 442 

estimator of Burnham and Overton in the one population case, and thus we define the 443 

upper bound as the second jackknife-type estimator 2
ˆ

Js . The derivation of jackknife-type 444 

estimators in the completely random case is similar and the jackknife-type estimator 445 

equals )
2

(
1

)( 11
112

2

0
n

f
ff

n

n
ns −+

−
+ ++

. Asymptotically, the jackknife-type estimator in 446 

the completely random case is very similar to those in the pair-wise case (closer to the 447 

upper bound).  448 

 In addition to the previous two jackknife-type estimators, it is also possible to derive 449 

other types of two-sample jackknife estimators. For example, Chuang et al. (2015) used 450 
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the jackknifing technique by Schechtman and Wang (2004) and proposed a jackknife esti- 451 

mator 1 12

2

110

)1(
)(

1
)( f

n

n
ff

n

n
ns

−
−+

−
+ ++ .  452 

 We can see that these jackknife-type estimators have similar form, and only differ in 453 

how we weight the singletons. The differences would be more obvious in the case of small 454 

samples and are small if there are many observations. Still, there is another reason for 455 

choosing 1
ˆ

Js and 2
ˆ

Js . The proposed estimators are based on the probability of discovering 456 

new shared species )('1 nv and )('

2 nv , and these probabilities can be used as stopping indi- 457 

cators. A detailed discussion of this can be seen in our empirical study (Section 4). 458 

Appendix 2. Estimates for the Number of Shared Species 459 

 460 

(a) Numbers of species in two populations are 1001 =s & 1002 =s , and the number 461 

of shared species 200 =s (J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): 462 

number of observed shared species) 463 

n 
 = 0.9  = 0.8 

)(0 ns  2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  )(0 ns  2

ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

100 17.59  19.82  22.62  21.99  13.27  16.42  18.35  17.37  

200 19.58  20.05  21.03  20.94  16.16  18.90  20.75  19.94  

500 20.00  20.00  20.02  20.02  18.91  20.13  21.35  21.03  

1000 20.00  20.00  20.00  20.00  19.79  20.13  20.51  20.47  

1500 20.00  NA 20.00  20.00  19.97  20.06  20.15  20.15  

2000 20.00  NA 20.00  20.00  19.99  20.02  20.04  20.04  

3000 20.00  NA 20.00  20.00  20.00  20.00  20.01  20.01  

4000 20.00  NA 20.00  20.00  20.00  20.00  20.00  20.00  

5000 20.00  NA 20.00  20.00  20.00  20.00  20.00  20.00  

  Note: Chao’s estimates become N/A if the sample coverage = 0. 464 

n 
 = 0.7  = 0.6 

)(0 ns  2
ˆ
Cs  1

ˆ
Js  2

ˆ
Js  )(0 ns  2

ˆ
Cs  1

ˆ
Js  2

ˆ
Js  

100 9.76  12.14  13.28  12.56  7.52  9.24  9.97  9.47  

200 11.73  14.40  15.39  14.63  8.86  10.58  11.16  10.72  

500 14.17  16.51  17.59  16.90  10.60  12.29  12.92  12.46  

1000 16.03  18.49  19.34  18.70  12.00  13.71  14.38  13.91  

1500 17.08  19.11  20.04  19.51  12.76  14.51  15.10  14.64  

2000 17.81  19.64  20.62  20.12  13.29  14.93  15.53  15.11  

3000 18.26  19.96  20.81  20.39  13.82  15.81  16.36  15.84  

4000 18.66  20.07  20.86  20.52  14.10  15.79  16.48  16.01  

5000 19.11  20.09  20.86  20.62  14.70  16.44  17.17  16.68  

(b) Numbers of species in two populations are 1001 =s  & 1002 =s , and the number of shared 465 

species 500 =s (J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): number of ob- 466 

served shared species). 467 

n  = 0.9  = 0.8 
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)(0 ns  2
ˆ
Cs  1

ˆ
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5000 49.33  50.15  51.54  51.39  30.01  33.66  35.76  34.59  

  Note: Chao’s estimates become N/A if the sample coverage = 0. 468 
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500 14.24  16.75  17.82  17.10  10.64  12.44  13.07  12.58  

1000 16.17  18.55  19.56  18.90  12.00  13.70  14.40  13.91  

1500 17.32  19.90  20.87  20.18  12.79  14.65  15.12  14.67  

2000 18.03  20.29  21.36  20.71  13.40  15.18  15.85  15.36  

3000 18.75  21.27  22.33  21.61  13.79  15.65  16.31  15.80  

4000 19.26  21.92  22.94  22.18  14.21  16.03  16.77  16.25  

5000 20.00  22.27  23.45  22.74  14.72  16.51  17.18  16.67  

Appendix 3. Variance of Estimates for the Number of Shared Species 469 

(c) Numbers of species in two populations are 1001 =s & 1002 =s , and the number 470 

of shared species 200 =s (J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): 471 

number of observed shared species) 472 

n 

 = 0.9  = 0.8 

2
ˆ
Cs  
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1
ˆ

Js
 2

ˆ
Js

 
2

ˆ
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Sample 

1
ˆ

Js
 2

ˆ
Js

 

Sample 
Equation 

(6) 
Sample 

Equation 

(8) 
Sample 

Equation 

(6) 
Sample 

Equation 

(8) 

100 5.77 10.75 16.35 7.76 9.79 16.5 15.70 20.08 10.42 9.78 

200 0.73 2.20 3.76 1.76 2.89 11.55 12.18 16.89 8.31 8.62 

500 0.01 0.03 0.08 0.03 0.08 3.33 5.16 7.98 3.72 4.76 

1000 0 0 0 0 0 0.57 1.05 1.73 0.86 1.33 

1500 NA 0 0 0 0 0.17 0.24 0.31 0.21 0.30 

2000 NA 0 0 0 0 0.03 0.06 0.12 0.06 0.12 

3000 NA 0 0 0 0 0.01 0 0.03 0.01 0.03 

4000 NA 0 0 0 0 0 0 0.01 0 0.01 

5000 NA 0 0 0 0 0 0 0 0 0 

Note: Chao’s estimates become N/A if the sample coverage = 0. 473 
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100 12.89  10.35  14.01  6.69  6.67  8.57  8.57  9.45  4.86  4.56  

200 17.27  11.82  14.79  7.64  7.02  9.44  9.44  9.32  4.84  4.51  

500 12.83  11.11  13.57  7.21  6.58  8.71  8.71  10.21  4.64  4.91  

1000 21.94  9.93  12.93  6.70  6.28  10.48  10.48  9.91  4.78  4.78  

1500 10.26  8.62  11.69  5.83  5.83  10.96  10.96  9.59  5.11  4.61  

2000 10.99  7.67  10.28  5.18  5.20  8.89  8.89  9.36  4.94  4.58  

3000 7.56  6.69  9.27  4.56  4.85  17.26  17.26  9.63  5.15  4.69  

4000 6.55  5.22  8.48  3.63  4.54  8.22  8.22  10.23  4.64  4.86  

5000 2.61  3.55  5.98  2.55  3.45  7.77  7.77  9.18  4.70  4.49  

(d) Numbers of species in two populations are 1001 =s & 1002 =s , and the number of shared 475 

species 500 =s (J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): number of ob- 476 

served shared species). 477 
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 = 0.9  = 0.8 
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ˆ
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ˆ
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ˆ
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ˆ
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Equation 

(6) 
Sample 

Equation 
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Equation 
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Equation 
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500 29.93 32.19 43.50 21.70 20.92 19.63 16.40 22.71 10.55 10.83 

1000 21.31 27.96 35.24 18.94 17.95 18.93 17.96 21.83 11.81 10.61 

1500 15.98 19.16 27.31 13.34 14.54 23.59 19.64 22.96 12.85 10.85 

2000 9.15 13.82 21.25 10.15 11.99 22.28 17.38 22.73 11.37 10.79 

3000 3.48 7.01 11.24 5.15 7.30 20.05 17.00 22.63 11.08 10.78 

4000 1.41 3.50 6.37 2.75 4.46 17.45 18.09 23.46 11.85 10.97 

5000 0.67 2.10 3.34 1.72 2.53 18.37 17.60 22.54 11.49 10.75 
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 = 0.7  = 0.6 
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Equation 

(6) 
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Equation 

(8) 
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Equation 

(6) 
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Equation 
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500 15.83  10.96  13.73  7.11  6.60  10.33  10.33  9.84  5.17  4.65  

1000 15.37  10.67  14.36  6.93  6.86  9.94  9.94  9.91  5.23  4.75  

1500 15.56  10.42  14.04  6.83  6.64  17.62  17.62  10.04  4.92  4.81  

2000 12.05  9.98  13.79  6.63  6.64  10.84  10.84  9.73  5.01  4.74  

3000 17.54  11.75  14.22  7.59  6.75  9.14  9.14  11.01  5.06  5.17  

4000 13.33  11.97  14.28  7.71  6.81  10.41  10.41  10.11  5.23  4.84  

5000 17.25  11.45  14.15  7.53  6.79  9.15  9.15  9.80  5.16  4.70  
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